\bar{X}, S are mean \& std dev of a SAMPLE, while...
μ, σ are mean \& std dev of the POPULATION

Section 1 - Descriptive Statistics

$n=\sum f$
Sample Mean (avg): $x=\frac{\sum f \cdot x}{n}$
Sample Variance: $\quad s^{2}=\frac{\sum f \cdot\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
Sample Std Dev: $\sqrt{s^{2}}$
The mean of a given freq. distribution is: x -bar $+/-$ std dev
NOTE: $\sum f \cdot\left(x_{i}-\bar{x}\right)^{2}=\sum f \cdot\left(x_{i}^{2}\right)-\frac{\left(\sum f \cdot x_{i}\right)^{2}}{n}$
Coding: $\quad u=\frac{x-A}{B}, \quad \bar{u}=\frac{\bar{x}-A}{B}, \quad s_{x}^{2}=B^{2} \cdot s_{u}^{2}$
Note: when converting variance back from coded, need to mult by B^{2}, but no need to translate by A

Section 2 - Probability

$\mathrm{P}(\mathrm{A})=\frac{n(A)}{n(s)}$
Complimentary event A: 1-P(A)

Or $\Rightarrow P(A \cup B)$ *** two cases***
If $\mathrm{A} \& \mathrm{~B}$ are mutually exclusive events:

$$
P(A \cup B)=P(A)+P(B)
$$

Else:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

And $=>P(A \cap B)$ *** two cases***
If $\mathrm{A} \& \mathrm{~B}$ occur at the same time INDEPENDENT:

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Else:
Conditional Probability

$$
\begin{aligned}
& P(B / A)=\frac{P(A \cap B)}{P(A)} \quad P(A / B)=\frac{P(A \cap B)}{P(B)} \\
& \Rightarrow P(A) \cdot P(B / A)=P(B) \cdot P(A / B)
\end{aligned}
$$

Methods of Enumeration

1. Listing
2. Tree diagram
3. Permutations (order is significant)... P -> Postion!!
4. Combinations (order is not significant)
5. Generalized Permutations

Permutation ${ }_{n} P_{k}=\frac{n!}{(n-k)!}$
Combination ${ }_{n} C_{k}=\frac{n!}{k!(n-k)!}$
Generalized Permutation ${ }_{n} P_{n 1 n 2 n 3 . . .}=\frac{n!}{n_{1}!\cdot n_{2}!\cdot n_{3}!\ldots \cdot n_{k}!}$

Discrete Distributions

If N is given, can choose HYPERGEOMETRIC or BINOMIAL distributions. If no N , can only use BINOMIAL
(n is sample size, N is population size)

$$
\mu=\sum x \cdot \operatorname{Pr}(x), \quad \sigma^{2}=\sum x^{2} \cdot \operatorname{Pr}(x)-\mu^{2}
$$

Types:

1. 'No name' (coins)
2. Hypergeometric $P(x=k)=\frac{\binom{X}{k} \cdot\binom{N-X}{n-k}}{\binom{N}{n}}$
3. Binomial $P(x=k)=\binom{n}{k} \cdot p^{k} \cdot q^{n-k}$

Also: $\mu=n \cdot p$, and $\sigma^{2}=n \cdot p \cdot q$

If $\mathbf{n}>\mathbf{3 0}$, approximate with Normal or Poisson if $n \cdot p \geq 5$ use Normal, else use Poisson

$$
\begin{aligned}
& \text { Normal } \rightarrow\binom{n}{k} \cdot p^{k} \cdot q^{n-k} \approx \int \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \text { Poisson } \rightarrow \lambda t=\mu=n \cdot p \\
& \text { 4. Poisson } P(x=k)=\frac{(\lambda t)^{k} \cdot e^{-\lambda t}}{k!} \quad \text { where } \lambda t=\text { rate }
\end{aligned}
$$

Also: $\mu=\lambda t$ and $\sigma^{2}=\lambda t$
5. Geometric

Continuous Distributions

Where $\mathrm{f}(\mathrm{x})$ is PDF:
$\mu=\int x \cdot f(x) d x$
$\sigma=\int x^{2} \cdot f(x) d x-\mu^{2}$

1. Normal Distribution, 'z' coding: $z=\frac{x-\mu}{\sigma}$
2. Exponential Distribution: $\lambda e^{-\lambda x}$

When the rand var ' x ' represents a continuous quantity (like time),
must use Exponential, NOT Poisson.
3. T-Distribution
4. F-Distribution

Confidence Interval of 'True mean'

Confidence interval: \% probability ($\mathbf{1 - \alpha}$) that the population mean lies within a particular interval on the distribution curve
$\pm Z_{\alpha / 2}=\frac{\bar{x}-\mu}{\sigma}$, where $Z_{\alpha / 2}$ is the z -value of the prob/2.

Large Sample (>=30):

\Rightarrow Central Limit Theorem applies, so the samples are said to be Normally distributed
***Memorize variations! ${ }^{* * *}$
Binomial:
$z=\frac{\hat{p}-P}{\sqrt{\frac{P \cdot Q}{n}}} ; \quad z=\frac{\hat{p}_{1}-\hat{p}_{2}-\left(P_{1}-P_{2}\right)}{\sqrt{\frac{P_{1} \cdot Q_{1}}{n}+\frac{P_{2} \cdot Q_{2}}{n}}}$

Small Sample (<30)

CLT not valid, but sample follows distribution of pop
If pop dist not given, must state assumption that it is conts!! (and ND?)
Case I: σ known: $=>$ sample is ND, so use Z dist, same as LS
Case II: σ unknown: $=>$ approx with S , sample is T-dist, with d.f. $\mathrm{n}-1$
See cases I, II, III of $\mu_{1}-\mu_{2}$

$$
\pm t_{\alpha / 2}=\frac{\bar{x}-\mu}{S / \sqrt{n}}
$$

Two Populations

If σ ? $\sigma_{a}=\sigma_{2}$, and can't guess:
Use F-Dist, with Hypothesis Test

$$
\text { If } h_{0}->\sigma_{1}=\sigma_{2}
$$

Then use Pooled Variance
Else: use T-Dist with long fmla
Chi-Squared Distribution dist of variances
$\chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}$

Hypothesis Testing

Step 1 - Decision Rule
Step 2 - Statistic (find where 'z' lands on the curve)
Step 3 - Conclusion
If random var needs to be 'equal' to a value, that must be part of the hypothesis $\left(H_{0}\right)$. The opposite direction is H_{1}.

F-Distribution

$F=\frac{S_{1}^{2}}{S_{2}^{2}} \quad$ s.t. $S_{1}>S_{2}$
In reading the table, take $\mathbf{1}-\boldsymbol{\alpha}$, and find $\boldsymbol{v}_{\mathbf{1}}$ in horizontal and $\boldsymbol{v}_{\mathbf{2}}$
in the vertical

